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ABSTRACT 

Vectorial Hankel operators are studied, in particular the ranges of Hankel 
operators induced by sums and products of matrix functions defined on the 
unit circle are determined. The analytical tools involve factorization theorems 
for operator valued analytic functions and the spectral analysis of operators 
that intertwine restricted shifts. 

1. Introduction 

In this paper we continue our investigation of vectorial Hankei operators 

started in [5], [6], [7]. We will study in depth the ranges of Hankel operators 

induced by sums and products  of matrix functions defined on the unit circle. 

The results obtained here have a system theoretic interpretation and are 

closely related to questions of controllability and observabili ty of series and 

parallel connect ion of canonical linear systems. For  a preliminary exposition of 

these ideas the reader is referred to [8]. 

Whereas some of the results of this paper may be stated in somewhat  greater 

generality, we will restrict ourselves to Hankei operators induced by matrix 

valued functions. The basic analytical tools will be the factorization theorems 

obtained in [6], [7] and the spectral analysis of operators that intertwine 

restricted shifts [2], [3]. 

Let  M and N be two separable complex Hilbert spaces. We denote by L 2(N) 

the Hilbert space of all (equivalence classes) weakly measurable functions 

from the unit circle to N having finite norm. The norm in L'-(N) is the one 

induced by the inner product  

1 yo 2~ (f ,g) = ~ ( f (e") ,  g(ei'))Ndt. 

We let H2(N) denote the subspace of L2(N) of all functions whose negative 

indexed Fourier  coefficients are all zero. We recall that H2(N) functions have 

analytic extensions into the unit disc f rom which they can be recaptured as 

radial limits almost everywhere  [9]. We will always use the same letter for  both 

the H2(N) function as defined on the unit circle, and its analytic extension to 
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the open unit disc. We let X denote the identity function on the closed unit disc, 

i.e. X(z)= z. We define right shift S in H2(N) by letting S [ = ) d  for all f in 

H2(N). We note that its adjoint S* is given by (S ' f )  (z) = (f(z) - f(O))/z. We let 

B(N,M) be the space of all bounded linear operators from N to M equipped 

with the operator norm. By L~(B(N,M)) we denote the space of all (equiva- 

lence classes) weakly measurable essentially bounded functions from the unit 

circle to B(N,M). Elements of L~(B(N,M)) have Fourier expansions [9], and 

we will denote by H~(B(N,M)) the subspace of L~(B(N,M)) of all functions 

whose negative indexed Fourier coel~cients are all zero. Functions in 

H~(B(N,M)) have analytic extensions into the open unit disc and can be 

recaptured as strong radial limits almost everywhere. For A in L~(B(N,M)) 
we let / i(z)=A(.~)*.  Clearly d is in L~(B(M,N)). 

A subspace of H2(N) will be called right invariant or left invariant if it is 

invariant under the right or left shift, respectively. The orthogonal complement 

of a left invariant subspace is right invariant, and vice versa. A subspace K of 

H~(N) is right invariant if and only if it has a representation K ~- PH2(N) for 

some function P in H~(B(N,N)) which has norm bounded by one and almost 

everywhere P(e") is a partial isometry with a fixed initial space [9]. Such 

functions are called rigid. An important subclass of rigid functions are the inner 

functions, i.e., those for which almost everywhere on the unit circle P(e ~') is 

unitary. Right invariant subspaces that correspond to inner functions are called 

subspaces of full range [9]. Given an inner function P in H~(B(N,N)), we 

denote by H(P) the left invariant subspace {pH2(N)} 1, where the orthogonal 

complement is taken in H2(N). We will use P~,~,, for the orthogonal projection 

of H2(N), and sometimes of L2(N), onto H(P). We define an operator S(P) 
in H(P) by 

(1. I) S(P)I = Pn,~',Xf 

for all /" in H(P). S(P) is called the restricted right shift and we have 

S(P)* = S*IH(P), that is S(P)* is the restriction of the left shift to the left 
invariant subspace H(P). 

An inner function P in H*(B(M,M)) is a left inner factor of a function A in 

H~(B(N,M)) if A = PA' for some A' in H| Two functions A and 

A, in H~(B(N,M)) and H~(B(N,,M)) respectively are left prime if A and A, 

have no common nontrivial left inner factor. We will use the notation 

(A,A,)~. = IM to denote the left primeness of A and A,. We will say that A and 

A, are strongly left prime if there exists a 8 > 0 such that for all z in the open 
unit disc 
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(1.2) inf{llA(z)*~l[ + [IA,(z)*~5 II 1r ~M, I1r ~}>= 8. 

We will use [A,Ad,. = IM to denote the strong left primeness of A and A~. 

Similarly, given A in H~(B (N, M)) and A ~ in H=(B (N, MD), we define right and 

strong right primeness analogously. We clearly have (A, A ,)~ = IN if and only if 

(A,A,)L = IN, and [A,A,]R = IN if and only if [,4,,4,], = IN. Thus [A,A,],~ = lr~ 

is equivalent to the existence of a 6 > 0 such that for all z in the open unit disc 

(I.3) inf{llA(z)'CJll+llA,(z)r Ir ~ N, I1"~1t = 1} >= 6. 

Let J be the unitary map in L 2(N) defined by (.If)(e") = f ( e " ) .  Given A in 

L=(B(N,M)) ,  we define HA the Hankel operator induced by A as the operator 
from H2(N) into H2(M) defined by 

(1.4) Hail = P,,,M,A (.If) 

for all f in H2(N). It is easy to check that 

(1.5) S 'HA = HAS. 

Here we used the same notation for the shift operators in H2(N) and H~(M). 

From (1.5) it follows that ke rHa  is a right invariant subspace of H2(N) 

whereas Range HA is a left invariant subspace of H2(M). We will say that A is 

strictly noncyclic if {Range HA }' is an invariant subspace of full range. Here 

the orthogonal complement is taken in H'-(M). For a strictly noncyclic function 

A the two invariant subspaces introduced above are closely associated with 

factorizations of the function A on the unit circle. The following theorem is 
quoted from [7]. 

THEOREM 1.I. Let A be in L|  

(a) The [following three statement.~ are equivalent: 

(i) A is strictly noncyclic. 

(ii) A is a strong radial of a B ( N , M )  valued meromorphic [function of 

bounded type in 19, = {z I I < [ z I <- ~}. 

(iii) On the unit circle A has a [factorization 

(1.6) A --- 2PC*, 

where P is inner in H| and C is in H=(B(M,N))  and 

(1.7)  (P,  C) , ,  = h,. 
(iv) On the unit circle A has a [factorization 
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(I.8) A = f(C*P,, 

where P, is inner in H| and C, is in H*(B(M,N) )  and 

(I.9) (P,,C,),. = IN. 

(b) I[ N and M are finite dimensional then the inner [unctions P and P, are 

quasiequivalent [10], [1 I] and in particular det P = det P, is satis]ied. 

We will refer to the factorizations (1.6) and (1.8) satisfying (1.7) and (I.9) as 

right and left prime factorizations, respectively. The inner functions P and P, 

are associated with the range and kernel of the Hankel operator HA by the 

following relations: 

(1.10) {Range HA }l = pH2(M) 

and 

(I.11) ker HA = f),H2(N). 

A slight generalization of the results of [5] yield the following theorem about 

range closure of Hankel operators. 

THEOREM 1.2. Let A in L~(B(N,M))  be strictly noncyclic and have the 

prime [actorizations (I.6) and (1.8). 

(i) Range HA = H(P) i[ and only if [/9,C]R = IM. 

(ii) Range HA = H(P)  i[ and only i[ [P,,C~],. = IN. 

2. Hankel operators induced by products 

Let L, M and N be three finite dimensional Hilbert spaces, and let A and B 

be strictly noncyclic functions in L~(B(N, M)) and L*(B(L,  N)), respectively. 

By Theorem I.I, the functions A and B have the following factorizations on 

the unit circle: 

(2.1) A = ~PC* = ~C*P, 

and 

(2.2) B = ~RD* = ~D*,R,, 

where P C H ~ ( B ( M , M ) ) ,  P,, R E H ~ ( B ( N , N ) )  and R , ~ H ~ ( B ( L , L ) )  are 

inner functions and C. C, ~ H~(B(M,N))  and D, D, ~ H~(B(N,L  )). Moreover 

we assume that 

(2.3) (P,C)~ = IM, (P,,C,), = IN 
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and 

(2.4) (R,D),  = IN, (R , ,D, ) ,  = I, 
are satisfied. 

Rather than study the range of the Hankel operator  induced by the function 

AB we will study that of the Hankel operator  induced by F in L~(B(L,M)) 
defined by 

(2.5) F = xAB.  

Since A and B are strictly noncyclic,  both have meromorphic extensions of 

bounded type to D., and hence also F has such an extension. Thus F itself is 

strictly noncyclic and by Theorem l.l  has the following factorizations on the 

unit circle: 

(2.6) F = ~QH* = ~H*Q,,  

where Q E H~(B(M,M)) and Q, E H=(B(L,L)) are inner functions, /4, H, E 

H=(B(M.L)) and the primeness conditions 

(2.7) (Q, H) .  = I~, (Q,. H,), = I,. 

are satisfied. 

The analysis of the general case will be based on the two special cases 

B =,~R and B = ~D*. 

LEMMA 2.1. Let A E L~(B(N,M)) be strictly noncyclic and let R E  
H~(B(N,N))  be an inner[unction, then Range HA CRange HA,. 

PROOF. Let [ E H:(N), then l~f E H'-(N) and 

HaR (/~f)= Pm~M,ARJ (I~f)= P.:tM,ARR *(.If) = P.2~M,A (.If)= Hal. 

Hence the stated range inclusion holds. 

In this case F = AR, and from the prime factorizations (2.6) it follows that 

Range HaR = H(Q). 

LEMMA 2.2. Let A and AR have the factorizations (2.1) and (2.6) satisfying 
(2.3) and (2.7), respectively, then 

(2.8) det Q = (det P ) .  (det R) 

if and only if 

(2.9) (R ,C) ,  = IN. 
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PROOF. Assume R and C have a nontrivial greatest left inner factor S. Thus 

R = SR2 and C = SC2. Since S is nontrivial, det R21det R and det R ~ det R2. 

Hence A R  = s  = s  and (R2,C:)L = IN. By Theorem i.l there exist 

R3 and C3 satisfying (R3, Ca) = IM and for which s = s Since R2 and 

R3 are quasiequivalent, we have det R., = det R3. Since A R  = s  = s 

it follows from (I.6) that Range HAs = H ( Q ) C H ( P R 3 ) .  The last inclusion 

implies QH2(M) ~ PR3H2(M) and hence, by Theorem l0 in [9], there exists an 

inner function T for which we have Q T  = PR3. This in turn implies that 

det Q I(det P) .  (det R3) and thus the equality (2.8) is impossible. 

Conversely, assume (2.9) holds. We have A R  = s  = s  Now, 

again by Theorem i.1, C*R has a factorization R2C* satisfying (R2,C2)R = IM. 

By the quasiequivalence of R and R2 we have the equality detR = detR2. 

From Lemma 2.1, H ( P ) C H ( Q )  and hence, by Theorem i0 in [9], there exists 

an inner function S in H ~ ( B ( M , M ) )  for which Q =PS.  Thus s  = 

f (QH*= s  and (S,H)R = IM is implied by (Q,H)R = IM. It follows that 

R2C* = SH*,  and as both factorizations are prime we have, by (l.10), the 

equality H ( S )  = H(R2). Therefore S and R2 differ at most by a constant unitary 

factor on the right. In particular det S = det R2 = det R (up to a constant factor 

of modulus one) and thus (2.8) is satisfied. 

The last iemma can be extended to yield results about the range closure of 

HAR. 

LEMMA 2.3. Let A and A R  have the factorizations (2.1) and (2.6) satis[ying 

(2.3) and (2.7), respectively. I f  HA has closed range then HAR has closed range 

H ( Q )  with (2.8) satisfied if and only if 

(2.10) [R,C]L = IM. 

PROOF. We saw in Lemma 2.2 that for (2.8) to hold (2.9) is necessary. Thus 

C*R = R2C* with (R2,C2)R = IM and hence A R  = s  = s From 

Lemma 2.2 it follows that the last factorization of A R  is prime, that is 

(PR2, C:)R = IM. Thus for Range H,,R to be closed, it is necessary, by Theorem 

1.2, that [PR2,C2]R = IM. Thus the weaker condition [R2,C2]R = IM is also 

necessary and, by Theorem 1.2, this is equivalent to (2.10). 

Conversely, assume (2.10) holds. This implies that the weaker condition (2.9) 

holds and hence by Lemma 2.1 RangeHa~ is dense in H ( Q ) =  H(PR2). By 

Lemma 3.1 in [1], which generalizes in a straightforward way to the vector 

valued case, we have 
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(2.11) H(PR~) = H(P)  O) PH(R..). 

Since Range HA = H(P)CRange  HA~, it suffices to show that PH(R2)C 

Range HAR. Let [ ~ H2(N),  then 

HARf = P,~,M,AR (J[) = P,2,M,y(PR2C*(Jf), 

and hence 

Ppu~s2,H,~Rf = P" P,2,M,~R2C*(Jf) -- PH~R~cff. 

Since (2.10) is equivalent, by Theorem 1.2, to [R2,C,.]L = lu, it follows that 

Range H~R2c; = H(R..), and the proof is complete. 

Next we assume B -- ,fD* for D in H ~ ( B ( N . L ) )  or equivalently F = AD*.  

LEMMA 2.4. Let :4 be in L ~ ( B ( N , M ) )  and D in H|  then 

Range HAo" C Range HA. 

PROOF. Let f E H2(L ), then 

HAo'f = Pn2,M,AD*(Jf) = Pu2,u,AJ ( ff)f) = HA (if)f), 

and obvious ly / ) [  is in HZ(N). 

Thus the factorization (2.6) of AD* together with the primeness condition 

(Q,H)R = IM imply Range HAo. = H ( Q )  and hence H ( Q )  CH(P) .  By Theorem 

10 in {9] it follows that for some inner function S in H| we have 
P = QS. 

LEMMA 2.5. Let A be strictly noncyclic in L * ( B ( N , M ) )  and let A and AD* 

have the [actorizations (2.1) and (2.6) satisfying conditions (2.3) and (2.7), 

respectively. A necessary and sufficient condition for the equality 

(2.12) det Q = det P 

to be satisfied, up to a constant factor of  modulus one, is 

(2.13) (P~,D)R = IN. 

PROOF. The necessity of condition (2.13) follows by reasoning analogous to 

that used in the proof of Lemma 2.2. 

To prove sufficiency of condition (2.13) for (2.12) to hold, we note that 

AD* = ~PC*D* = ~C*P,D* = ~QH*.  

Since P = Q S ,  it follows that S C * D * = Q H * .  Now (P,C)R =IM implies 

(S,C)R = IM and hence, by an application of Theorem I.l, SC* = C~$2 for 
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some inner function $2 in H ' ( B ( N , N ) )  and C., in H| for which 

($2,C2)f. = IN. As P,~M~f(H*~ = 0 for all ~ ~ L, we have P,~MjC*(f(S2D*~) = O, 

which in turn implies that PH~M~C~P,:~,fcS2D*~ =0.  But P,'-,N,y(S2D*~ = 

H~s~o.~ belongs to H(S:). It follows from Theorem 2.6 in [3] that P,~,~,C~_f = 0 

for some nonzero f in H(S2) if and only if (C2,S. .hr  IN. Thus, since 

(C.,S2)c = I~, we have H~s~o.~ = 0 for all ~ in L. This. together with (S._.D)~ = 

IN, implies that Range H~s~o. = {0} and hence the triviality of S~, i.e. S~ and 

hence also S, which is quasiequivalent to it, are constant unitary operators. The 

primeness condition (S2,D)~ = IN itself follows easily from (2.13) and the fact 

that P = QS. Since S is trivial, we have (2.12) satisfied up to the multiplicative 

constant det S. 

As was the case with Lemma 2.2, the above lemma can be sharpened as 

follows. 

LEMMA 2.6. Let A be strictly noncyclic in L~ (B(N ,M) ) ,  having the factor- 

izations (2.1) that satisfy conditions (2.3), and assume that Range HA is closed. 

Let D belong to H|  )), then a necessary and sufficient condition for the 

equality 

(2.14) Range HAo. = Range HA 

to hold is 

(2.15) [P,.DIR = IN. 

PROOF. We begin by proving the necessity of (2.15). By Lemma 2.5 for 

Range HAD" = Range HA it is necessary that (P,,D)R = IN. Thus P,D* = D*P~. 

for an inner function P2 in H| and D. in H ~ ( B ( N . L ) )  satisfying 

(P2,D2)L = h .  Since AD* = ~PC*D* = ~C*P,D* = ~C*D~_*Pz, it follows that 

a necessary condition for Range HAo. = H(P)  is that [P:, D,_C~]L = I,. Thus it is 

also necessary that [P2,D]j. = I~. be satisfied which, by Theorem 1.2, is 

equivalent to (2.15). 

Conversely, we assume (2.15) holds. Thus Range H~p,o. = H(P~). Clearly also 
Range H~p, = H(PO. Now for f E H2(L) 

HAo.f = P,~2~M~AD*(J[)= P,,2~M~C*P,D*(Jf) = P,:~.~C*P,~-~N,f(P~D*(Jf). 

Hence Range HAD" = {P,",M,C*g I g ~ H(P,)} or 

Range H~D. = If ~ H ' ( L  )} 

= {Ps2,M,f(C*P,(Jf)If ~ H2(L)} = Range HA = H(P) .  
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Finally we combine the results of the previous lemmas to give the following 

theorem. 

THEOREM 2.7. Let A E L~(B(N,M))  and B E L~(B(L,N))  be strictly non- 

cyclic, having the [actorizations (2.1) and (2.2) that satisfy the primeness 

conditions (2.3) and (2.4), respectively. Let F be defined by xAB have the 

[actorizations (2.6) satis[ying the primeness conditions (2.7). 

(a) A necessary and sufficient condition [or 

(2.16) det Q = (det P)- (de t  R) 

to hold is that 

(2.17) (C,R)L = IN and (P,,D,)R = IN 

are satisfied. 

(b) Assume Ha and lib have closed range, then HF has closed range and 

(2.16) holds if and only i[ 

(2.18) [C,R ]t = IN and [P,,D,]R = IN 

are satisfied. 

PROOF. (a) The necessity of conditions (2.17) for (2.16) to hold follows by 

the same arguments as in Lemma 2.2. So we assume (2.17) to hold and consider 

y(PC*R = ~C*P~R. As (R,C)t  = IN, we have (P~R, COL= IN and thus the range 

closure of H~Pc.R is H(Q ' )  for some inner function Q'  in H| 

satisfying det Q' = (det P,) .  (det R) = (det P) .  (det R). Next we consider F = 

xAB = ($C*P,R)D*. By Lemma (2.5) we will have (2.16) satisfied if and only 

if (P,R,D)R = IN. Now P~RD* = P,D*R~ and by considering the range of the 

Hankel operators induced by these functions and using Lemma 2.2 we find that 

(P,R,D)n = IN is equivalent to (P,,D,)R = IN and (D,,R,)L = I~, and hence 

sufficiency has been proved. 

(b) By part (a) the weaker conditions (2.17) are necessary for (2.16) to hold. 

From (2.17) it follows that C*R=R2C~. for some inner function 

R2EH=(B(M,M))  and C2~H=(B(M,N))  satisfying (R_,,C2)R =IM. So, as 

F = $PC*RD* = ~PR:C*D*, for Hr to have closed range it is necessary that 

(2.19) [PR2, DC2]R = IM. 

For (2.19) to hold it is necessary that 

(2.20) [R2,C.o]R = lu. 
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But, by Theorem i.2, [R~, C2IR = lu if and only if [R, Cb. = IN. The necessity of 

[P, Dd,~ = IN is proved analogously using the representation F = xC,P,D,R, . -  * * 

Conversely, let us assume the conditions in (2.18) are satisfied. Thus 

Range H,. = H(Q) and (2.16) is satisfied by part (a). Hence we have to prove 

only that Range Hr is closed. By Lemma 2.3, H~ec.R has closed range. Now 

H~r.R = H~cr~,,R and hence 

(2.21) [P,R,C,],. = IN 

holds. By Lemma 2.6, Hr has closed range if and only if [P,R,D]R = h,. The 

range of H~p,D, is closed by the assumption (2.18), thus, since ~P~RD*= 

~P,D*R,, the assumption [R,DdL = IL implies, by an application of Lemma 

2.3, the range closure of H~e, RD'. Hence [P,R, D]R = IN and Range Hr is closed. 

3. On inner functions and invariant subspaces 

We devote this section to some results concerning inner functions and 

invariant subspaces that will be needed in the next section. This generalizes 
some results obtained in [7]. 

Let R E H| be an inner function, M being again a finite dimen- 

sional Hilbert space. Define a map rs:L~(M)--~L'(M) by 

(3. l) ~-d = Yd~JL 

It has been proved in [2] that rR is a unitary map that satisfies 

rR (H(R)) = H(I~ ), 

rR (RH2(M)) = L Z(M) @ H:(M), 

and 

zR(L 2(M)@ H2(M)) --_ I~H2(M). 

Therefore H~a = P.,cM,TRIHZ(M) is a partial isometry, with H(R)  as initial 

space and H(/~) as final space. From general properties of partial isometries it 
follows that 

(3.2) Prom = H~* ~H~ = H~RH~a. 

As before PmR, denotes the orthogonal projection of H:(M) onto H(R).  

LEMMA 3.|. Let P and R be inner functions in H~(B(M,M)).  I[ (P,R),. = 
IM, then P,,R,{PH2(M)} is dense in H(R).  
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PROOF. 

have 

By the representation (3.2) of the orthogonal projection on H(R)  we 

PH(R)Pf  = H~RH~I~,P f = H~RPH2(M)~I~JPf = Hf(RPH2(M)XRP~Jf. 

Now (P,R)L = IM implies (/5,/~)R = IM and hence, by Theorem 1.1, the range of 

H ~ .  is dense in H(/~). Moreover, since ker H~R = RH2(M), it follows that 

H~R(H(R)) = H(R).  This proves the lemma. 

Using Theorem 1.2 concerning range closure of Hankel operators, we can 

strengthen the previous lemma as follows. 

LEMMA 3.2. Let P and R be inner functions in H| If  [P,R]L = IM 

then PmR~{PH2(M)} = H(R).  

PROOF. From the proof of the previous lemma we have 

PmR,{PH2(M)} = H~ {Range H ~ . } .  

By Theorem 1.2,  [P,R]L =IM implies that RangeH~a~.=H(/~).  Since 

ker H~R = RH2(M) and Range H~R = H(R),  the result follows. 

The next theorem is quoted from [6]. 

TrIEOREM 3.3. Let P, R and Q be inner functions in H| for which 

(3.3) QH2(M) = PH2(M) r RH2(M). 

Then there exist inner functions P~ and RI such that 
(i) The factorizations 

Q = PR1 = RPI (3.4) 

hold. 

(ii) 

(3.5) 

det Q I (det P) .  (det R) with 

det Q = (det P)-  (det R) ,  

the equality up to a constant factor of modulus one, if and only if (P, R )L = IM. 

(iii) (P,R)L = IM if and only if (PI,ROR = IM. 

Equivalently, if H ( Q ) =  H ( P ) v  H(R)  then (3.5) is satisfied if and only if 

(P,R)L =IM. The condition (P,R)L =/,,i is in turn equivalent to 

H(P) N H(R)  = {0}. Thus equality (3.5) is the multiplicative analog of the fact 

that, given two finite dimensional subspaces M and N of a linear space, 

dim (M + N) = dim M + dim N if and only if M f3 N = {0}. 
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Replacing the left primeness of P and R by strong left primeness yields the 

following strengthening of statement (iii) in Theorem 3.3. 

LEMMA 3.4. Let P, R and Q be as in Theorem 3.3, then [P,R]L = Iu if and 

only if [P,,Rj]R = Iu. 

PROOF. Assume [P,R],  = Iu. From the factorizations (3.4) it follows that 

~ R * P  = ~P~R*. By Theorem 1.2 the Hankel operator H~R.p has closed range 

and hence also its adjoint H~a,~; has closed range. Thus (/~1, P1]L = Iu or 

[R~,P~]R = lu. The converse follows by symmetry. 

As a corollary we get the following theorem. 

THEOREM 3.5. Let P and R be inner functions. The left invariant subspaces 

H(P)  and H ( R )  have a nonzero angle if and only if [P, R ],. = Iu. 

PROOF. The sum of two subspaces M~ and M2 of a Banach space satisfying 

MI fq M2 = {0} is closed if and only if for some d > 0 

inf(/Ix,-x2// Ix, EM,, {Ix,{/= l}=>d. 

For this the reader is referred to [12]. In a Hilbert space this is equivalent to 

sup{l(x,,x,)[ Ix, ~ M,,llx, l l - -1}<I ,  

which has the interpretation that M1 and Mz have a positive angle. 

Now assume [P,R]L = IM. Already the weaker condition (P,R h. = IM implies 
that H(P) fq  H ( R ) =  {0}. Thus it sutfices to show 

(3.6) H ( Q )  = H(P)  + H ( R ) .  

By Lemma 3.4, [P,R],  = I~ if and only if [P,  RdR = IM. By the matrix version 
of the Carleson corona theorem [2], there exist q~ and ",F in H ' ( B ( M , M ) )  for 

~vhich ~ P t  + XttR, = Its, and hence, using the factorizations (3.4), we have 

Q* = ~ P , Q *  + g ,R,Q* = ~ R  * + q~P*. 

Going to adjoints we have 

,~Q -- ,~(R ~* + Pq,*), 

and proceed to consider the corresponding Hankel operators. H*eo has closed 
range equal to H(Q) ,  whereas Range H~R.-CH(R) and Range H~p,. CH(P) .  
So we have 

H ( Q )  = Range H~R~,.~p..~ C Range H~R.. + Range H~p,. C 

H ( R )  + H(P)  C H ( R )  v H(P)  = H ( Q ) .  
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Hence we must have equality all the way and in particular (3.6) holds. 

Next we show the necessity of [P, R h  = I~. Assume [P ,R]Lg  IM. The most 

obvious violation of [P, R ], = I~ is the existence of a vector r /~  0 and a point A 

in the open unit disc for which 

(3.7) P(h)*n = R(A )*~ = O. 

But P ( A ) * r / = 0  implies ( 1 - , ( ~ ' ) - ' ~ I ~ H ( P ) ,  and hence (3.7) implies 

H(P) f3 H(R)  ~ {0}. 
In general (3.7) does not hold and we will resort to an approximation 

argument. If [P ,R]Lr  I~,, there exists a sequence A. of points in the open unit 

disc and a sequence of unit vectors r/. ~ M for which 

lira II P(~.)%. II = lira II R (A.)*r/, II = 0. 

We will show the existence of a sequence F, E H(P)  and a sequence 

F" E H(R ) for which lim II fo II - lim II F" II = 1 and also lim (F,, F'.) = 1. This 

implies that H(P) and H(R) have zero angle. 

Consider the normalized eigenfunctions of the left shift in HZ(M) given by 

H. = fl -Ix. [2)"-'(I - ;~.x)- 'n.  

and take their decomposition with respect to the two direct sum representa- 

tions of H2(M) induced by the left invariant subspaces H(P) and H(R). Thus 

/4. = F, + (3. = F" + G" with F. E H(P) ,  G, E PH2(M), F" ~ H(R)  and G" 

RH2(M). A simple computation [3] yields 

F, = (1--IA. 12)tn(l -7t.X)-'(IM - pp(,x..)*)r/. 

and similarly for F'.. Since P is inner, we have II a .  II = II P(;~.)*,7. II and hence 

limll G. II--0 and/imll  Fo II = 1.similarly, limllF'.ll = 1 and limllG;ll  = 0 .  N o w  

1 = ( H . , H . ) = ( F .  + G . , F ' + G ' ) = ( F . , F ' ) + ( F . , G ' ) + ( G . , F ' ) + ( G . , G ' . ) ,  

and, as the last three terms obviously tend to zero, we have lira ( F . , F ' ) =  1. 

This completes the proof. 

4. Hankel operators induced by sums 

Let A and B be two strictly noncyclic functions in L| which, by 

Theorem 1.1, have the following prime factorizations on the unit circle: 
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and 

(4.2) 
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Here P and R are inner functions in H| M)),  P, and R, inner functions 

in H * ( B ( N , N ) ) ,  and C, C,, D and D, in H|  Since the factorizations 

(4.1) and (4.2) are assumed prime, we have 

(4.3) 

and 

(4.4) 

(P, C)R = IM, (P,, C,)L = IN 

(R,D)R = IN, (R,,D,)L = IN. 

Clearly A + B has also a meromorphic extension of bounded type to D, and 

hence, by Theorem 1.1, it has the following prime factorizations on the unit 
circle: 

(4.5) 

satisfying 

A + B = ~ S H *  = $ H * S j ,  

(4.6) (S,H),~ = IM and (S , ,H,)L = IN. 

Here S and Sj are inner functions in H |  and H |  

respectively, and H, H~ E H |  Let Q E H |  be an in'ner 
function for which 

(4.7) Q H  2 = pH2(M)  (q R H 2 ( M ) .  

The existence of such a Q fo&ows from the fact that PH2(M)  N RH2(M)  is an 

invariant subspace of full range. By Theorem 10 in [9], there exist inner 

functions P '  and R'  in H |  for which 

(4.8) Q = P R ' =  RP '  

holds. The following relations are immediate: 

Range HA ,s = Range(/-/, + Hs) CRange HA V Range HB 

= H ( P )  v H ( R )  = H ( Q ) .  

Therefore, since Range HA,a= H(S),  we have the inclusion H ( S ) C H ( Q )  

which implies the existence of an inner function W ~ H |  for which 

Q = SW.  From this factorization it follows that det S ldet Q. Now we have 

always det Q ](detP) .  (det R) with the equality 
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(4.9) det Q = (det P ) .  (det R ) 

holding, up to a constant factor of modulus one, if and only if 

(4.11) (P,R)~. = IM. 

Thus (4.10) is a necessary condition for the equality 

(4.11) det S = (det P) .  (det R) 

to be satisfied. Since H ( S ) C H ( Q ) ,  the equality (4.11) implies the equality 

(4.12) H ( S )  = H ( Q ) .  

Condition (4.10) by itself is not sufficient for (4.12) to hold. The exact 

statement is given by the next theorem. 

THEOREM 4.1. Let A and B be strictly noncyclic with factorizations (4.1) 

and (4.2) satisfying the primeness conditions (4.3) and (4.4). Let Q be an inner 

function satisfying (4.7). A necessary and sul~cient condition for the equality 

(4.13) 
Range Ha.n  = H ( Q )  

to hold together with relation (4.9) is 

(4.14) (P,R)L = IM and (P , ,R , ) ,  = IN. 

PROOF. We saw already the necessity of (P,R)L = IM. Since, by Theorem 

1.1, the equalities 

det S = det S,, det P = det P, and det R = det R~ 

hold, by considering the functions A, /3 and .4 +/J ,  it follows by the same 

reasoning that (/5 /~,)~. = IN is necessary for (4.1 1) to hold. But (/5,,/?,)L = IN is 

equivalent to (P , ,R , ) ,  = IN and the necessity of (4.14) is proved. 

Next assume conditions (4.14) hold. In particular (P, ,R,)L = IN. Now 

ker HB = I~,H2(N). Let us look at H,,.~ restricted to ker B. For f in H2(N) we 

have 

HA . . R , I  = (HA + H.) I~ , I  = HAI~,I. 

But 

HAler PH,,,,,,AJI~,f 2 - * * = = PH (.~,xC ,P ,R  ,Jf  = H~ct.,,;[, 

and hence we have 

Range H~c;p,R; = HA {I~,HZ(N)}. 
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Now, by Lemma (2.5) the condition (P,,R,)n = IN implies that 

H(P)  = Range H~c;P,R; 

To sum up, we proved H ( P ) C  Range Ha§ and analogously H ( R ) C  

Range Ha+R, and hence 

H(P)  v H ( R )  C Range Ha~s. 

Since the inverse inclusion holds always, we must have equality. The condition 

(P,R)z. = Iu implies now, by Theorem 3.3, that (4.9) holds. 

The corresponding result about range closure of sums of Hankel operators of 
closed range is given by the next theorem. 

THEOREM 4.2. Let A and B be strictly noncyclic in L * ( B ( N , M ) ) ,  with 

[actorizations (4.1) and (4.2) satisfying (4.3) and (4.4), and assume Ha and FIB 

have closed ranges. Then Range HA.o = H ( Q ) for an inner[unction Q satisfy- 

ing (4.9) if and only if the following strong primeness conditions hold : 

(4.15) [P,R]L = IM and [P,,R,]R = IN. 

PROOF. We begin proving the necessity of conditions (4.15) for (4.9) to hold. 

By the previous theorem conditions (4.14) are necessary, and will be assumed 

to hold. This implies that Range Ha+,, = H(Q).  Now Q has the two factoriza- 
tions given by (4.8), and therefore from 

it follows that 

(4.16) 

A + B -- ~{PC* + RD*} = ~QH* 

H = CR'  + DP' .  

For HA§ to have closed range it is necessary that 

(4.17) [Q, CR'  + DP']R = IM 

holds. Keeping in mind the factorizations (4.8), this implies the necessity of 

[R',P']R = IM, which, by Lemma 3.4, is equivalent to [P,R],. = IM. The neces- 

sity of [P,,R,]R = IN follows by the same reasoning by duality. 

To prove sufficiency, assume conditions (4.15) to hold. By assumption 

RangeHA = H(P)  and RangeHB = H(R) .  By Theorem 3.5 the strong prime- 

ness condition [P, R h  = I~ implies that the angle between H(P)  and H ( R )  is 

positive, and hence H ( P ) +  H ( R )  is a closed left invariant subspace. Since 

H(Q)  = H(P)  v H ( R )  
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it fo l lows that ac tua l ly  

H ( Q )  = H ( P )  + H ( R ) .  

Thus  it suffices to show that  H ( P )  and  H ( R )  are inc luded  in Range  HA+B. Since 

ker H~ = I ~ H 2 ( N ) ,  we have  HA+R {ker He} = HA {ker HB} = HA{I~,H2(N)} .  As 

in the proof  of T h e o r e m  4.1, we have  

HA {/~,H~(N)} = Range  HAR,. 

Apply ing  L e m m a  2.6, the cond i t ion  [P,,R,]R = IN implies  

Range  HART = Range  HA = H ( P ) ,  

Similar ly  H ( R ) C R a n g e  HA+B is p roved  and  with it the proof  is comple te .  

REFERENCES 
1. P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta Math. 

124 (1970), 191-204. 
2. P. A. Fuhrmann, On the Corona Theorem and its applications to spectral problems in 

Hilbert space, Trans. Amer. Math. Soc. 132 (1968), 55-66. 
3. P. A. Fuhrmann, A functional calculus in Hilbert space based on operator valued analytic 

functions, Israel J. Math. 6 (1968), 267-278. 
4. P.A. Fuhrmann, On sums of Hankel operators, Proc. Amer. Math, Soc, 46 (1974), 65--68. 
5. P. A. Fuhrmann, Realization theory in Hilbert space for a class of tran#er [unctions, 

J. Funct. Anal. 18 (1975), 338--349. 
6. P. A. Fuhrmann, On Hankel operator ranges, meromorphic pseudo-continuations and 

[actorization of operator valued analytic [unctions, to appear, J. London Math. Soc. 
7. P. A. Fuhrmann, Factorization theorems for a class o[ bounded measurable operator valued 

[unctions, to appear. 
8. P. A. Fuhrmann, On canonical realization of sums and products of nonrational transfer 

[unctions, Proc. 8th Princeton Conference on Information Sciences and Systems. 1974. 
9. H. Helson, Lectures on Invariant Subspaces, Academic Press, N. Y., 1964. 
10. B. Moore, III and E. A. Nordgren, On quasi-equivalence and quasi-similarity, Acta Sci. 

Math. Szeged 34 (1973), 311-316. 
11. E. A. Nordgren, On quasi-equivalence of matrices over H', Acta Sci. Math. Szeged 34 

(1973), 301-310. 
12. A. E. Taylor, Introduction to Functional Analysis, Wiley, N. Y., 1958. 

DIVISION OF ENGINEERING AND APPLIED PHYSICS 
HARVARD UNIVERSITY 

CAMBRIDGE, MASSACHUSETTS 02138 

Current address 

DEPARTMENT OF MATHEMATICS 
BEN GURION UNIVERSITY OF THE NEGEV 

BEER SHEVA, ISRAEL. 


